Physics	name	e			period
Inv-7 Expan Part VI	$\Sigma F = ma$	& angles		S	sheet #
Show your work on the pr	oblems	box in answers	s No	Naked	Numbers
1.) A rocket (350 kg) has a propulsion	n force of 3900.	N. What will be its acce	eleration off t	ne launchin	g pad?
2a.) A 500. kg rocket has a propulsion for launching pad. At this point the rocket shut down?					
2b.) What will be the rocket's upward	velocity at the t	ime the engines shut d	own?		
2c.) What will be the maximum altitude Hint: Add what you found from 2a to					
2d.) What will be the rocket's total tin <u>Hint:</u> Add what was given in 2a to the		ou calculate here:			
2e.) EXTRA CREDIT: Draw the triplet	graph (y vs. t;	vy vs. t; ay vs. t) repre	esenting the re	ocket's verti	cal motion.

3.) A moving man slides a 700. N box across a wooden floor. The contact between the box and the floor causes a frictional force of 200. N. How hard does the man have to push on the box in the horizontal direction to give it an

acceleration of 1.2 m/s^2 ?