\qquad
\qquad Back: \qquad sheet \# \qquad

CONS: $0.305 \mathrm{~m}=1 \mathrm{ft} ; 5280 \mathrm{ft}=1 \mathrm{mi} ; 12 \mathrm{in} .=1 \mathrm{ft} ; 3 \mathrm{ft}=1 \mathrm{yd} ; 1 \mathrm{knot}=1.15 \mathrm{mph} ; 1 \mathrm{~N}=\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2} ; 1 \mathrm{Joule}=\mathrm{N} \cdot \mathrm{m}$

1.) Here is the equation for air drag $\left(\mathrm{R}_{\mathrm{a}}\right)$ at high velocities through a thin medium: $R_{a}(v)=\frac{1}{2} D \rho A v^{2}$

Where D is the Drag Coefficient, rho (ρ) is the density of the medium (usually air), A is the profile area of the object in the direction of motion and v is the velocity of the object. Here's the question: How many knots is an airplane moving if the drag coefficient is 0.20 , the density of air is $0.0012 \mathrm{~g} / \mathrm{cc}$, the profile area is 520 square inches, and the force of air drag is 750 N .

2.) A rocket has a thrust force of 120 MN . The rate of gas mass loss of the rocket is $500 \mathrm{mg} / \mathrm{ns}$, Use the Thrust Equation for Rockets $\left(\mathbf{F}_{\mathbf{T}}=\boldsymbol{m} \mathbf{V}_{\mathbf{e}}\right)$ to determine the mph of this escaping gas from the exhaust of the rocket.

3.) From the Rotational Energy equation: $K_{R}=\frac{1}{2} I \omega^{2}$ What is the rpm (revolutions/min) of a large motor with a moment of inertia (I) of $45 \mathrm{~kg} \cdot \mathrm{~cm}^{2}$ and a rotational kinetic energy of $320 \mathrm{kN} \cdot \mathrm{cm}$? $(2 \pi$ radians $=1$ revolution $)$

4.) From Elastic Potential Energy: $\quad U_{s}=\frac{1}{2} k x^{2} \quad$ A spring with an elastic potential energy of 2500 kJ is compressed 18 mm from it's equilibrium position. What is the spring constant (k) in terms of $\mathrm{MN} / \mathrm{cm}$?

5.) From Universal Gravitation: $F_{g}=G \frac{m_{1} m_{2}}{d^{2}}$ What must be the mass in $T g$ of a newly discovered moon of exoplanet Kepler-452B if the distance from the center of Kepler-452B (mass $=9.3 \times 10^{25} \mathrm{~kg}$) and its moon is 210,000 miles and the force of gravitational force of the new moon from Kepler-452B is 88 GN . Universal Gravitational Constant $\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} \bullet \mathrm{~m}^{2} / \mathrm{kg}^{2}$)

6.) Using the equation relating frequency to energy $(\mathrm{E}=\mathrm{h} f)$ determine the frequency in GHz of an electromagnetic wave that has an energy of $5.30 \times 10^{-11} \mathrm{pJ}$. h is known as Plank's Constant. $\mathrm{h}=6.626 \times 10^{-34} \mathrm{~m}^{2} \mathrm{~kg} / \mathrm{s}$.
Remember that a Joule $=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{sec}^{2}$ and that 1 hertz $=1$ cycle per second. (A cycle is not a unit, it is just a word)

