| Physics name | | | | | period | |---|----------------------|-------------|----------------------------------|-----------|-------------------------| | Inv-7 Expan. II Intro to FBDs | | | | | sheet # | | Draw "profile view" FBDs (Free Body Diagrams) in present. <u>Indicate the relative size</u> of the forces invol | | | | | wing all forces | | R = air resistance/water drag; $n = normal$; f_s | | | | | F _T = Thrust | | mg= weight; F_D = push or pull; F_L = Force of li | | - | • | | | | REMEMBER: TRUE FBDS CO | | | | | | | Use another color to show the external source for ea | | | | | | | If there is a direction of motion show it with: | velocity | | | | | | 1.) A car slowly accelerating 0 to 60 mph @ 30mph. | 2.) A car | r quickly a | accelerating 0 | to 60 mp | oh @ 20mph. | | <u>:</u> | | | } | | | | | | | ę
ę | | | | | | | | | ****** | | | | | | | | | : | | | į. | | | | Symbol Equation: | Sy | mbol Equ | ation: | | | | ΣF_{x} | ΣF_x | | | | | | 3.) A car traveling down the highway in cruise | 4.) Now s | speeding | up from 60 m | ph to 120 |
0 mph @ 80mph | | control at a constant speed of 60 mph. | | | | | | | | | | : | | | | | | | | | | | | | ,,,,,,,,,,, | | | | | | | | : | | | | <u> </u> | | | : | | | | Symbol Equation: | Sy | mbol Equ | ation: | | | | ΣF_x | $\sum F_x$ | | | | | | 5.) The car slowing down from 120 mph to 60 mph |] [
6] The | e car com | ing to a quick | stop fro | m 60 mph | | @ 80mph by the driver putting the car in neutral. | by | the drive | er "locking up
ne snapshot is | the bral | kes" and | | : | | | ; | : | | | | SE | _
 {SE} | | | | | | ΣF{x} | ΣF_{x} | | | | | | 7.) A rocket (with rockets firing) accelerating upward through the earth's atmosphere at an angle of approximately 75° with the horizontal. | 8.) |) That same space capsule from 7 traveling through intergallactic space at 40,000 mph without it rockets firing. | | | | |---|----------------|--|-----------------|--|--| | | | | | | | | Symbol Equations: | | Symbol Equations: | | | | | ΣF_{x} | ΣF_{x} | | | | | | ΣF_y | ΣF_y | | | | | | 9.) A helium balloon rising and accelerating at 80° to the the horizontal with the wind gusting horizontally from the left. Snap shot is @ 10mph. | : | 10.) The forces on a rowboat being to ship at a 10 knots. The rope from the rowboat makes an angle of 35° with the | oig ship to the | | | | | | | | | | | Symbol Equations: | , | Symbol Equations: | | | | | ΣF_{x} | ΣF_x | | | | | | ΣF_y | ΣF_y | | | | | | 11.) A tennis ball in contact with ground as it is at maximum compression and getting ready to reform and bounce straight back up. | | 12a.) A bowling ball sinking in water 12b.) A bowling ball rising in water. | | | | | | | a.) b.) | | | | | Symbol Equation: | , | Symbol Equations: | | | | | ΣF_{v} | a.) Σ] | Fv | | | | | • | b.) Σ | · | | | |