Physics

Inv-3 Expan IB Vector Construction

period _____

Introduction:

On this sheet we are going to learn more about adding vectors by the construction method, then I am going to prepare you to go out to the west lawn, determine your pace, and do a little orienteering work (which may just save your life one day).

Vector Construction:

1.) Starting with the three vectors in figure a, write all the vector addition equations that go with figures b, c and d.

Write three vector addition equations for figure b: 1^{st} one: (example) D + C = R 2^{nd} one: 3^{rd} one:		
Write three vector addition eq 1 st one:	uations for figure c: 2 nd one:	3 rd one:
Write the vector addition equations for figure d:		
Write three vector subtraction equations for figure b: 1^{st} one: (example) D - B = A 2^{nd} one: 3^{rd} one:		
Write three vector subtraction 1 st one:	•	3 rd one:

2.) Now we will add and subtract a few vectors whose magnitudes are modified Draw the resultant R in a different color and properly describe it. Remember R goes from 1^{st} tail to last head:

a.) Map view $R_1 = (^{3}4A - 2B + 3C) m$	b.) Profile view $R_2 = (-3A + \frac{2}{3}B - \frac{1}{2}C) \text{ m/s}$
R ₁ :@	R ₂ : @
scale: 1 cm = 2 m/s/s	scale: 1 cm = 4 N

name _____