\qquad
\qquad
\qquad

2b.) Write the specific equation for the ball's vertical component as a function of time.

3.) Draw projection of the ball onto the x assuming it takes 20 seconds for the ball to make one complete revolution.

4a.) Write the general equation for the ball's horizontal component as a function of time.
\square

4b.) Write the specific equation for the ball's horizontal component as a function of time.

5.) Draw the omega vector (ω)in the circular drawing above left that represents the dot moving in a counter clockwise direction.

6a.) So the y vs. t above ends up being a sine wave and the x vs. t ends up being a cosine wave. What is the difference between the sine wave and the cosine wave?

6b.) Complete the following sentence: For the graphs above, the max amplitude of the y component of the ball's position lags behind the max amplitude of the x component by \qquad radians or \qquad degrees and, in this case, \qquad seconds
7.) We said it takes 20 seconds to complete one revolution. This is called the period of ball. It's symbol is T_{p}. What is the relationship between ω and T_{p} ?

