Physics	name	period
Inv-7 Expan I: Newton's	1st and 2nd Law: Intro (Ques & Probs sheet #
1.) Show that you understand the Newton's 2nd Law (1700's: $F = \Delta y$		alk lab and both versions of
Show the mathematical steps your group took to get from the raw data the Duck Walk Lab to get to Newton's 2nd Law the way HE originally wrote it	Now sketch and label the graph we found relating the force the duck walkers pit on the cart compared to the resulting acceleration	How do you go from this graph to our modern day version of Newton's 2nd Law?
2a.) Mr. Richardson uses a broom 340 ms, how much will Patches mox direction)		
2b.) If Patches (15 kg) was moving for 420 ms, what will be the fat cat	at a velocity of 3.0 i m/s whenN 's velocity just after the force wa	Mr' Richardson applied his force s applied?
3.) Two balls are lifted several feet and the other has a mass of 80.0 ki or F = ma) to find the gravitationa	lograms. Use one of your newfo	

Show work for the 80.0 kg object here:

Show work for the 20.0 kg object here:

4.) Would an object in intergalactic space (between galaxies) still have inertia? yes no So here is a better question: If an unbalanced force is applied to this intergalactic object, would the object react the same as if it were on earth and the same unbalanced force were applied to it horizontally?
What is the difference between inertial mass and gravitational mass?
5.) A force is put on a 10 kg object that causes the object to increase its speed from from 20 m/s to 50 m/s in 15 seconds. Show your work and units in determining the force on the object. Required FBD:
6.) Basil pulls with a horizontal force of 20.0 N on a 300 N wagon. Required FBD: a.) What acceleration does the wagon undergo (ignore friction)?
b.) Assuming the wagon starts from rest, how far will it move in 2.0 s?
7.) A father in a supermarket pushes a cart loaded with groceries with a total mass of 30.0 kg. He places his 30 N child in the cart and pushes the whole load with a horizontal force of 10.0 N. How fa will the cart move in 4.0 s assuming he starts with an initial velocity of 75 cm/s and there is negligible friction. Required FBD: