What if we want to subtract vectors by the head-to-tail method? The negative of a vector has the same magnitude, but it is oriented in the opposite direction of the original vector.

What if you multiply a vector by a scalar? That's easy! It just affects the magnitude, not the direction. so if vector \mathbf{C} looks like this \longrightarrow then 2 C looks like $\longrightarrow-1 / 2 \mathrm{C}$ is:

See, I told you it was easy. Now do the following vector operation $\mathbf{A}+2 \mathbf{B}-1 / 2 \mathbf{C}=\mathbf{R}$

The component method. In this method you must break each vector down into its x and y components. In order to do this you need to know a little bit about trigonometry.
TRIG REVIEW -- (use the following space for notes) sin, cos. \tan (SOH - CAH - TOA)

In order to use this method, your vectors need to be oriented on an x, y axis. Basically, it's a matter of breaking down each vector into its x and y components and then adding all the x components together for the x component of the resultant and adding all the y components together for the y component of the resultant.

Example:

